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Abstract: Sarcasm is a form of speech act in which the 
speakers convey their message in an implicit way. It is a 
sophisticated form of speech act widely used in online 
communities. The inherently ambiguous nature of sarcasm 
sometimes makes it hard even for humans to decide whether 
an utterance is sarcastic in nature or not. Recognition of 
sarcasm may anticipate benefits in many sentiment analysis of 
NLP applications, such as  safe search, review summary 
reports, engaging dialogue systems and review ranking 
applications and systems. 
Classification of online news articles for satire has been very 
much done in the manual way. In our system, we have 
experimented with an automated approach to classify online 
news article using the SVM (Support Vector Machine) 
classification method. SVM has been shown to give good 
classification results when ample training documents are 
given. Obtaining the best results with SVMs requires an 
understanding of their workings and the various ways a user 
can influence their accuracy.  
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1. INTRODUCTION

Irony and satire can be useful weapons in any 
communicator‘s rhetorical arsenal. They provide a nuanced 
means for expressing critical sentiments and for openly 
exploring divisive subjects. However, the very subtlety that 
grants these devices their utility also lends to their greatest 
drawback: implied meanings are often lost on their 
intended audience. In textual communication this difficulty 
is magnified by the absence of any non-verbal cues that 
might imply a non-literal interpretation. 
The goal of this project is to utilize machine learning 
strategies to develop a classifier for recognizing satirical or 
sarcastic web articles. Such content is, by definition, 
written to resemble more sincere communication and may 
be unrecognizable as ironic without sufficient contextual 
information. Therefore, in an attempt to capture broader 
―context, the proposed classifier will rely not only on 
original, article texts, but also upon user-generated 
comments associated with each article. 

2. RELATED WORKS & THEIR LIMITATIONS

While the use of irony and sarcasm is well studied from its 
linguistic and psycho logic aspects, automatic recognition 
of sarcasm is a challenging and emerging area of 

application in NLP, accomplished only by few researches. 
As far as the opinion mining is concerned, the sarcasm is 
considered as a hard nut that is yet to be cracked. 
Tepperman et al. (2006) identify that sarcasm in verbal 
systems, their research is limited to sarcasm expressed in 
utterances that hold the expression 'Yeah right' and it 
depends heavily on cues in the spoken dialogue such as 
laughter, pauses within the speech stream, the gender 
(recognized by voice) of the speaker and prosodic features 
[1]. 
Tsur (2010) propose a semi supervised framework for 
recognition of sarcasm [2]. The proposed algorithm utilizes 
some features specific to (Amazon) product reviews. This 
paper continues this line, proposing SASI a robust 
algorithm that successfully captures sarcastic sentences in 
other, radically different, and domains such as twitter. 
Utsumi (1996) introduces the implicit theory of display, a 
cognitive computational model that frameworks an  ironic 
system [3]. The complex axiomatic system depends heavily 
on complex formalism representing world knowledge. 
While comprehensive, it is currently impractical to 
implement on a large scale or for an open domain. 
Detailed work done by Paolo Rosso et al, in their work 
“Figurative Language Processing in Social Media for 
Human recognition and Irony detection” tries to bring out a 
linguistic-based framework for figurative language 
processing with special reference to emotion human like 
humor and irony in text generated in social media [4]. The 
author has suggested “Ambiguous-based pattern” using the 
concept of lexical, morphological, syntactic and semantic 
construction of the text in English language. The author 
emphasizes his models with examples and mathematical 
expressions of the model. 
Lexical: Drugs may lead to nowhere, but at least it’s a 
scenic route. 
Morphological: Customer: I’ll have two lamb chops, and 
make them lean, please. 
Waiter: To which side, sir? 
Syntactic: Parliament fighting inflation is like the Mafia 
fighting crime. 
Semantic Jesus saves, and at present costs, which is a 
nothing but a miracle! 

The author also considers the figurative language 
processing as a field of natural language processing. The 
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authors also focus on finding the formal element to 
computational process the figurative uses of natural 
language. The author makes detailed study of phonology, 
incongruity, semantics, similes, etc. However this study 
does not explain the subjective task and personal decisions. 
Another study conducted by Po-Ya Angela using a corpus 
of 500 #irony and 500 #sarcasm tweets, have concluded 
that the sarcastic tweets use more positive words but ironic 
tweets use more neutral words [5]. 
E. Riloff and other have made a comparative study of 
positive and negative sentiments and a negative situation 
[6]. 
 

3. PROPOSED WORK 
3.1 Data Corpus 
Our satire corpus consists of a total of 2500 news wire 
documents and 110 satire news articles, split into fixed 
training and test sets as detailed in Table 1. The news wire 
documents were randomly sampled from the English 
Gigaword Corpus. The satire documents were selected to 
relate closely to at least one of the news wire documents 
by: 

1. Randomly selecting a news wire document;  
2. Hand-picking a key individual, institution or event 

from the selected document, and using it to 
formulate a phrasal query (e.g. Bill Clinton)  

3. Using the query to issue a site-restricted query to 
the Google search engine; and  

4. Manually filtering out ―non-newsy, irrelevant 
and overly offensive documents from the top-10 
returned documents (i.e. documents not containing 
satire news articles, or containing satire articles 
which were not relevant to the original query).  

Table- 1: Data Corpus Statistics 
 

 
 
It is important to note that the number of satirical news 
articles in the corpus is significantly less than the number of 
true news-wire articles. This reflects an impressionistic view 
of the web: there is far more true news content than satirical 
news content. The corpus is novel to this research, and is 
publicly available for free downloading..at: 
http://www.csse.unimelb.edu.au/research/lt/resources/satire
/. 
3.2 Method 
3.2.1 Standard text classification approach  
We take our starting point from topic-based text 
classification (Dumaise al., 1998; Joachims, 1998) and 
sentiment classification (Turney, 2002; Pang and Lee, 
2008) [7], [8],[9] and [10]. 
State-of-the-art results in both fields have been achieved 
using support vector machines (SVMs) and bag-of-words 
features. We supplement the bag-of-words model with 
feature weighting, using the two methods described below. 
Binary feature weights 
Under this scheme all features are given the same weight, 
regardless of how many times they appear in each article. 
The topic and sentiment classification examples cited 
found binary features gave better performance than other 

alternatives. 
Bi-normal separation feature scaling: BNS (Forman, 
2008) has been shown to outperform other established 
feature representation schemes on a wide range of text 
classification tasks. This superiority is especially 
pronounced for collections with a low proportion of 
positive class instances. Under BNS, features are allocated 
a weight according to the formula: 

|F-1(tpr) – F-1(fpr)| 
where F-1 is the INCDF (inverse normal cumulative 
distribution function), tpr is the true positive rate 
(P(feature|positive class)) and fpr is the false positive rate 
(P(feature|negative class)). 
BNS produces the highest weights for features that are 
strongly correlated with either the negative or positive 
class. Features that occur evenly across the training 
instances are given the lowest weight. This behavior is 
particularly helpful for features that correlate with the 
negative class in a negatively skewed classification task, so 
in our case BNS should assist the classifier in making use 
of features that identify true articles. 
SVM classification is performed with SVMlight (Joachims, 
1999)  using  a linear kernel and the default parameter 
settings. 
3.2.2 Targeted lexical feature 
This section describes three types of features intended to 
embody characteristics of satire news documents. 
Headline features 
Most of the articles in the corpus have a headline as their 
first line. To a human reader, the vast majority of the satire 
documents in our corpus are immediately recognizable as 
such from the headline alone, suggesting that our classifiers 
may get something out of having the headline contents 
explicitly identified in the feature vector. To this end, we 
add an additional feature for each unigram appearing on the 
first line of an article. In this way the heading tokens are 
represented twice: once in the overall set of unigrams in the 
article, and once in the set of heading unigrams. 
Profanity  
True news articles very occasionally include a verbal quote 
which contains offensive language, but in practically all 
other cases it is incumbent on journalists and editors to 
keep their language ―cleanǁ. A review of the corpus shows 
that this is not the case with satirical news, which 
occasionally uses profanity as a humorous device. Let P be 
a binary feature indicating whether or not an article 
contains profanity, as determined by the 
Regexp::Common::profanity Perl module given at: 
http://search.cpan.org/perldoc?Regexp::Common:: 
profanity 
Slang  
As with profanity, it is intuitively true that true news 
articles tend to avoid slang. An impressionistic review of 
the corpus suggests that informal language is much more 
common to satirical articles. We measure the informality of 
an article as: 
 
 
 
where T denotes the set of  tokens (unigram) in the article 
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and s is a function taking the value 1 if the token has a 
dictionary definition marked as slang and 0 if it does not. 
It is important to note that this measure of ―informalityǁ is 
approximate at best. We do not attempt, e.g., to 
disambiguate the sense of individual word terms to tell 
whether the slang sense of a word is the one intended. 
Rather, we simply check to see if each word has a slang 
usage in Wiktionary. 
3.3 Proposed Algorithm 
Step 1—Text pre-processing: 
Pre-processing of the text and representing each document 
as a feature vector. 
Step 2—Feature Extraction: 
Generating set of features by transforming input data. 
Step 3—Training: 
To train a classifier using a classification tool (e.g. 
LIBSVM). 
Step 4—Classification: 
Applying classifiers in new documents. 
3.3.1 Text Pre-processing  
3.3.1.1 Tokenization 
Tokenization is the process of breaking a stream of text 
into symbols, phrases, words or other useful elements  
referred tokens. This token-list is inputed for further 
processing like parsing or mining of the text. Tokenization 
is very useful in both computer science  and linguistics 
(where it is a form of text segmentation), where it forms 
part of lexical analysis. 
Example: 
Phrase: We are attending a tutorial now. 
After Tokenization: ―we,―are, ―attending ,―a, 
―tutorial, ―now . 
For these operations, we used the Python nltklibrary. 
3.3.1.2 Stop Word Removal 
In computing, stop words are words which are filtered out 
prior to, or after, text processing. It is controlled by human 
input and is not automatic in nature. There is no list 
(definite) of stop words which uses all tools, if even used. 
Any group of words can be chosen as the stop words for a 
given purpose. But they consist of those words which are 
commonly used and not useful for text classification. 
Example:  
Remove words such as ―a, ―the, ―I, ―he, ―she, ―is, 
―are, etc. 
Removal of stop words is done using nltk, where English 
stop words are predefined. 
3.3.1.3 Stemming 
Stemming is the process for reducing inflected (or 
sometimes derived) words to their stem, base or root form. 
In other words, it is the process to normalize words derived 
from the same root. 
Example: 
Attending― attend; Teacher― teach etc. 
Stemming is done using Porter stemmer, which is a part of 
nltk. 
 
3.3.2 Feature Extraction 
Feature extraction involves simplifying the amount of 
resources required to describe a large set of data precisely. 
When the analysis of complex data is done, one of the 

major issues arises from the number of variables present. 
Analysis which includes a large number of parameters 
generally requires a large amount of computational memory 
and computation power or a classification algorithm which 
over-fits the training sample and generalizes poorly to new 
samples. Transforming the input data into the set of 
features is called feature extraction. 
We have used unigram features, i.e. to use each word as a 
feature. We adopted and then implemented the following 
weighting approaches, like: 

1. Binary feature weights (BIN) 
2. Term Frequency - Inverse Document Frequency (TF-
IDF) 
3. Term Frequency - Bi-normal separation feature 
scaling (TF-BNS) 

      4. TF-IDF-BNS (Original work ) 
 

Binary feature weights (BIN) 
Under this scheme all features are given the same weight, 
regardless of how many times they appear in each article. 
The topic and sentiment classification examples cited 
found binary features gave better performance than other 
alternatives. 
Term Frequency - Inverse Document Frequency (TF-
IDF) 
Normalized is the most popular weighting schema for  
word frequency is 'tfidf', given below: 
 
 
 

1. tf(w)–term frequency (number of word 
occurrences in a document)  

2. df(w)–document frequency (number of documents 
containing the word)  

3. N–number of all documents  
4. tfidf(w)–relative importance of the word in the 

document  
 
Term Frequency - Bi-normal separation feature scaling 
(TF-BNS) 
Under TF-BNS, features are allocated a weight according 
to the formula: 
 
                        TF*(F-1(tpr) – F-1(fpr)) 
 
where F-1 is the INCDF (inverse normal cumulative 
distribution function), tpr is the true positive rate 
(P(feature|positive class)) and fpr is the false positive rate 
(P(feature|negative class)) and TF is term frequency. 
BNS produces the highest weights for features that are 
strongly correlated with either the negative or positive 
class. Features that occur evenly across the training 
instances are given the lowest weight. This behavior is 
particularly helpful for features that correlate with the 
negative class in a negatively skewed classification task, so 
in our case BNS should assist the classifier in making use 
of features that identify true articles. 
TF-IDF-BNS 
Under TF-IDF-BNS, features are allocated a weight 
according to the formula: 
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                         (TF-BNS)* (IDF) 
TF-BNS–Term Frequency Bi-Normal Separation feature 
scaling (Calculated earlier). 
IDF–Inverse document frequency (Calculated earlier). 
 
3.3.3 Training 
We train a classifier using a classification tool, e.g. 
LIBSVM which is a SVM (Support Vector Machine) 
classifier. 
3.3.3.1  Support Vector Machine 
A support vector machine (SVM) is a concept in statistics 
and computer science and IT for a set of related SLM 
(supervised learning methods) that analyze data and 
recognize patterns, used for classification and regression 
analysis. For each given input the standard SVM takes a 
set of input data and predicts which of the two possible 
classes forms the input, making the SVM a non-
probabilistic binary linear classifier. 
Given a set of training examples, each marked as 
belonging to one of two categories, an SVM (support 
vector machine) training algorithm constructs a model that 
assigns new ways into one category or the other. 
An SVM model is a representation of the examples as 
points in space, mapped so that the separate categories' 
examples are broken by a clear gap that is as wide as 
possible. New examples are then linked into that same 
space and predicted to join to a category based on which 
side of the introduced gap they fall on. 
More formally, a SVM (support vector machine) forms a 
hyperplane or set of hyperplanes in a space (high or 
infinite-dimensional), which can be used for classification, 
regression, or other tasks. 
Intuitively, the hyperplane achieves a good separation  that 
has the longest distance to its nearest training point of data 
to any class. 

 
Figure-1: Hyperplane having maximum margin and SVM 

trained  margins with samples. 
 

3.3.3.2 Non-Linear Classification 
The original optimal hyperplane algorithm proposed by 
Vapnik in 1963 was a linear classifier. However, according 
to, Bernhard E. Boser, Isabelle M. Guyon and Vladimir N. 
Vapnik in 1992 suggested a way to create nonlinear 
classifiers by introducing the kernel trick (originally given 
and proposed by Aizerman et al. to hyperplanes having 
maximum margin. 

 
Figure-2: Classification (Non-Linear). 

 
3.3.3.3 Kernel Trick 
Kernel trick helps map your original data into a different 
space so that you can use linear classifiers. This mapping 
can often substantially increase the number of features to 
consider. This can be problematic as your number of 
dimensions grows. The Kernel Trick addresses this by 
putting a cap on the feature explosion so that the 
complexity of your classifier increases only linearly with 
the size of your original data. 
 
 
 
 
 
 
 
 

Figure-3: Kernel Trick 
 

3.3.3.4 Classification 
An algorithm that implements classification, especially in a 
concrete implementation, is known as a classifier. The term 
"classifier" sometimes also refers to the mathematical 
function, is implemented by a classification algorithm that 
maps input data to a category. In our case we used SVM 
Classifier (LIBSVM) for classification of Satire Articles. 
The classification measure is given by some parameters. 
These parameters are as follows: 
 
Accuracy: It is the proportion of true results (both true 
positives and true negatives) in the population. It is a 
parameter of the test. 

Precision: It is the proportion of the true positives against 
all the positive results (both true positives and false 
positives). 
 
 
Recall: It is the proportion of the true positives against all 
the true results (both true positives and false negatives). 
 
 
 
F-Score: It is a measure of a test's accuracy. It considers 
both the precision p and the recall r of the test to compute 
the score. 
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Table-2: Classification 

 
4. RESULTS 

4.1 Performance of the system 
The baseline is a naïve classifier that assigns all instances 
to the positive class (i.e. SATIRE). An SVM classifier with 
simple binary unigram word features provides a standard 
text classification benchmark. 
All of the classifiers easily outperform the baseline. This is 
to be expected given the low proportion of positive 
instances in the corpus. The benchmark classifier has very 
good precision, but a low recall. Adding the exaggeration, 
slang, and profanity features provides a small 
improvement in both precision and recall. 
All of the classifiers achieve very high precision and 
considerably lower recall. Error analysis suggests that the 
reason for the lower recall is subtler satire articles, which 
require detailed knowledge of the individuals to be fully 
appreciated as satire. While they are not perfect, however, 
the classifiers achieve remarkably high performance 
given the superficiality of the features used. 
 

Table- 3-:Results for Satire Detection 

 
5. CONCLUSION 

5.1 Choices made and Reasons 
This project was implemented entirely in Python, because 
Python has inbuilt support for natural language processing 
using NLTK Library. It is efficient in performing complex 
operations easily with a few lines of code and has inbuilt 
functions for almost every trivial or non-trivial task. 
5.2 Key Features of the project  
We have done feature extraction of all the articles in the 
training set and assigned weights to all the words that 
remain after pre-processing task. 
We assigned weights to the words according to the 
following weighing schemes: 
1. Binary feature weights (BIN). 
2. Term Frequency - Inverse Document Frequency  
(TF-  IDF). 
3. Term Frequency - Bi-normal separation feature scaling 
(TF-BNS). 
4. TF-IDF-BNS (original work). 
This research project has introduced a novel task to 
computational linguistics and machine learning: 
determining whether a news-wire article is ―trueǁ or 
satirical. We found that the combination of SVMs with 

BNS feature scaling achieves high precision. Also, some 
notable mentions are as follows: 
 

1. Our classification using various weighing 
technique provided varied result.  

2. The best result of Satire Classification was given 
by TF-BNS weighing scheme.  

3. Controlling the parameters of the SVM Classifier 
also helped in getting better result and we arrived 
at the best result by exhaustive experiments and 
trials with the SVM classifier.  

 
FUTURE SCOPE 

Lexical approaches are clearly inadequate if we assume 
that good satirical news articles tend to emulate real news 
in tone, style, and content, what is needed is an approach 
that captures the document semantics. 
Semantic based classification may yield better result in the 
case of satire article detection, as dealing with the meaning 
of a word is better than dealing with the usage of the word. 
As the successful use of satire relies heavily upon context 
and subtlety, methods that consider only whether a word 
was used and not how it is used may ultimately prove 
incapable of driving a highly effective classifier. Further 
research may need to explore more advanced language 
processing methods. 
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